Contents

1		A Backward Monte Carlo algorithm to solve the Vector Radiative Transfer Equation	13
	1.1	The concept of Backward Monte Carlo	13
	1.2	Performance of the BMC algorithm	15
	1.3	Applications of the BMC algorithm	16
2		Characterization of close-in exoplanet atmospheres with optical phase curves	37
	2.1	Kepler-7b's phase curve	38
	2.2	The toy model for interpretation	38
	2.3	Findings and perspectives	39
3		High-dispersion spectro-polarimetry. A new approach for exoplanet characterization	67
	3.1	HDSP explained	68
	3.2	Findings and perspectives	70
4		Forward scattering from Titan's atmosphere	83
	4.1	Titan's phase curves from Cassini observations	83
	4.2	Radiative transfer modeling	84
	4.3	Other findings. Perspectives	85
5		Forward scattering from exoplanet atmospheres	93
	5.1	An analytical theory for forward scattering from planetary atmospheres	93
	5.2	Detectability of the brightness rise at exoplanets	94
6		Examples of application of the BMC algorithm	115