Contents

Ał	Abstract							
Acknowledgments								
1	Intro	oductio	n	1				
	1.1	Proble	m Statement	1				
	1.2	Contri	butions	3				
	1.3	Thesis	3 Outline	6				
2	Dyn	amics	and Active Vibration Control of the Lightweight Stress-Ribbon Footbridge	7				
	2.1	Static	and Dynamic Characteristics of a Stress-Ribbon Bridge	7				
	2.2	Dynar	nics of the CFRP Stress-Ribbon Footbridge	12				
		2.2.1	Structural Characteristics	13				
		2.2.2	Finite-Element Modelling and Modal Characteristics	14				
		2.2.3	Pedestrian-Induced Vibration of the Stress-Ribbon Bridge	23				
		2.2.4	Time-Varying Modal Characteristics of the Footbridge	26				
	2.3	Active	Vibration Control of the Stress-Ribbon Bridge	28				
		2.3.1	Experimental Setups	30				
		2.3.2	Vibration Control with State-Space Models	35				
		2.3.3	State-Space Modelling with White-Box Models	38				
3	Ехр	erimen	tal System Identification for Active Vibration Control	45				
	3.1	Introd		45				
	3.2	Black-	Box System Identification Based on SIM	47				
		3.2.1	Subspace Identification Algorithm	47				
		3.2.2	Modal Transformation and Model Validation	49				
	3.3 Black-Box Identification Based on SIM		Box Identification Based on SIM	52				
		3.3.1	Design of Stochastic Excitation Signals	53				
		3.3.2	Experimental Subspace Identification	54				
		3.3.3	Model Validation	60				
	3.4	Grey-I	Box Identification Based on PEM	63				
		3.4.1	Predefined Model Structure	63				
		3.4.2	Parameter Estimation and Model Verification	67				

		3.4.3 Comparative Analysis of Black-Box and Grey-Box System Identification	73		
	3.5	Summary	75		
4	Mult	ti-Modal State Estimation Based on Inertial Sensors	77		
	4.1		77		
	4.2	Drift-free Estimation of Velocity/Displacement from an Accelerometer	80		
		4.2.1 Band-Limited Multiple FLC	80		
		4.2.2 Estimation of BMFLC with KF	81		
		4.2.3 Calculation of Displacements and Velocities	82		
	4.3	State Estimation of Vertical and Torsional Modes in Setup C	84		
		4.3.1 Sensor Information Fusion from Multiple Sensors	84		
		4.3.2 Weighted Fusion KF with Inertial Sensors	86		
	4.4	Experimental Verification of Multi-Modal State Estimation	86		
		4.4.1 Experimental Verification of Nodal State Estimation with Accelerometers	87		
		4.4.2 Experimental Verification of Rotation Angles with Gyroscopes	89		
		4.4.3 Real-Time Estimation of Vertical and Torsional Modes	90		
	4.5	Conclusions	93		
5	Mult	ti-Modal Active Vibration Control for the Stress-Ribbon Bridge	95		
	5.1	Challenges in AVC of the Bridge	96		
	5.2	Modal Control Law for AVC of the Bridge	97		
		5.2.1 Modal Control Law of Multiple Modes of Interest	98		
		5.2.2 Optimal Sensor Position for Modal State Estimation	101		
		5.2.3 Multi-Modal Control of the Stress-Ribbon bridge	110		
		5.2.4 Time-Delayed Modal Velocity Feedback Control	112		
	5.3	Stability Analysis due to Changing Modal Characteristic	120		
	5.4	Overview of the Designed Multi-Modal AVC	122		
6	Sim	ulation and Experimental Verification	127		
	6.1	Simulation of Multi-Modal Active Vibration Control	127		
		6.1.1 Simulation of AVC with 2D Models in Setup B2	128		
		6.1.2 Simulation of AVC with 3D Models in Setup C	129		
	6.2	Experimental Verification of the Designed Controller	132		
		6.2.1 AVC of Vertical Modes in Setup B2	133		
		6.2.2 AVC of the Stress-Ribbon Bridge in Setup C	135		
		6.2.3 AVC of Superposed Resonance Vibration in Multiple Modes	139		
	6.3	Active Vibration Control of Pedestrian Induced Vibration	143		
7	Con	clusions and Recommendations	151		
	7.1	Conclusions	151		
	7.2	Recommendations for Further Research	153		
Bibliography					

viii

Aŗ	Appendices		
A	Time-Frequency Spectrum of the Bridge under Pedestrian Loading	169	
в	Parameters and the Force Model of the PMAs	175	
С	Sensibility Analysis of Changing Modal Characteristics Based on Root Locus Plot	179	
D	Pedestrian-Induced Vibration With and Without AVC	191	
Е	List of Acronyms and Symbols	197	