Inhaltsverzeichnis

1 Einleitung und Forschungsfrage	1
2 Passfederverbindungen	4
2.1 Geometrie und Anwendung der Passfederverbindung	4
2.2 Beanspruchung der Passfederverbindung	8
2.2.1 Mechanismus der Lastübertragung bei Torsion	8
2.2.2 Schwellende Torsion	10
2.3 Vor- und Nachteile von genormten Passfederverbindungen	12
2.4 Gestaltfestigkeitsnachweise nach DIN 743	12
2.4.1 Nennspannungen und Nennspannungsamplituden	13
2.4.2 Einflussfaktoren und Kerbwirkungszahl	14
2.4.2.1 Technologischer Größeneinflussfaktor K1	14
2.4.2.2 Geometrischer Größeneinflussfaktor K2	14
2.4.2.3 Geometrischer Größeneinflussfaktor K3	15
2.4.2.4 Einflussfaktor der Oberflächenrauheit	15
2.4.2.5 Einflussfaktor der Oberflächenverfestigung	16
2.4.2.6 Kerbwirkungszahl für Torsion	16
2.4.3 Ertragbare Spannungen, Ausschlagfestigkeit und Sicherheit gegen Dauerbruch	17
2.4.4 Mittelspannungseinfluss	18
2.4.5 Sicherheit nach DIN 743	18
2.5 Aktuelle Kerbwirkungszahlen	20
2.6 Diskussion der aktuellen Kerbwirkungszahlen	22
2.6.1 KWZ nach DIN 743 und Versuche unter wechselnder Torsion	23
2.6.2 Kerbwirkungszahlen unter schwellender Torsion	24
2.6.3 DIN 6802 zur Berechnung von Bassfederverhindungen	26

	2.6.4 Kerbwirkungszahl aus Versuchen unter Umlaufbiegung	27
	2.6.5 Einfluss der Fertigungsabweichung unter schwellender Torsionsbeanspruchung	29
	2.6.6 Einfluss des Übermaßes auf die Dauerfestigkeit	31
2.7	Problemstellung und Forschungsziele	34
	2.7.1 Problemstellung	34
	2.7.2 Forschungsziele	34
3 V	ersuchsplanung und Festlegung der Versuchsparameter	36
3.1	Versuchsplanung	36
	3.1.1 Wahl der Verbindungsparameter	37
	3.1.2 Experimentelle Untersuchungen	43
	3.1.3 Auswerteverfahren	45
3.2	Werkstoff-Zugversuche	45
3.3	Vorbereitung der Proben	50
	3.3.1 Fertigung der Proben	
	3.3.2 Fertigung der Probewellen (ungekerbte Wellen)	52
3.4	Montage der Passfederproben (Passfeder-Welle-Nabe)	52
4 \	/ersuchseinrichtungen	54
4.1	Wechseltorsionsprüfmaschine	54
	4.1.1 Prinzip der Lasterzeugung und mechanischer Aufbau	54
	4.1.2 Einspannung und Montage der Proben an der Maschine	59
4.2	Messung der Prüfparameter und Kalibrierung der Messsysteme	60
	4.2.1 Messung der Prüfparameter	60
	4.2.2 Kalibrierung der Torsionsmomentmesswelle	63
4.3	Regelung der Wechseltorsionsprüfmaschine	64
4.4	Fehlerbetrachtung	66

5 \	orversuche und Auswertungsverfahren69
5.1	Versuchsverfahren69
	5.1.1 Treppenstufenverfahren69
	5.1.2 Versuchsschema71
	5.1.3 Implementiertes Verfahren
5.2	Vorversuche73
	5.2.1 Bestimmung der Startpunkt und Laststufen für Treppenstufenverfahren73
	5.2.2 Vergleich der eigenen Vorversuche mit den Vorversuchen von GROSSMANN74
5.3	Statistische Auswertungsverfahren77
	5.3.1 IABG-Methode
	5.3.2 arcsin \sqrt{P} -Transformation79
	5.3.3 Extremwertverfahren81
	5.3.4 Implementierte Auswertungsverfahren82
6 E	Ergebnisse der Untersuchungen an Passfederverbindungen86
	Einfluss der statischen Vorspannung auf die Tragfähigkeit unter schwellender rsion
6.2	Einfluss des Werkstoffes auf die Tragfähigkeit unter schwellender Torsion97
6.3	Einfluss der Passung auf die Tragfähigkeit unter schwellender Torsion102
6.4	Experimentell ermittelte Ergebnisse für die Rundwelle106
6.5	Diskussion der Ergebnisse der Dauerschwingversuche108
	6.5.1 Experimentelle Ermittlung der Kerbwirkungszahl
	6.5.2 Zusammenstellung der ermittelten Kerbwirkungszahlen
7١	/ergleichende Untersuchungen112
	Vergleich der experimentellen Ergebnisse mit der Auslegung nach DIN 743 slegung112
	Vergleich der experimentellen Untersuchungen von Passfederverbindgen unter schwellender Torsion115

7	7.2.1 Vergleich mit experimentellen Untersuchungen von PFV (GROSSMANN)	115
7	7.2.2 Vergleich mit experimentellen Untersuchungen von PFV (ZANG)	117
7.3	Vergleichende Untersuchungen (Verbindungsart)	118
7.4	Vergleichende Untersuchungen (Belastungsart)	120
8 Z	usammenfassung und Ausblick	122
8.1	Zusammenfassung	122
8.2	Ausblick	125
9 L	iteraturverzeichnis	126
9.1	Literatur	126
9.2	Normen und Richtlinien	133
Anl	hang	136
An	hang A: Technische Zeichnungen der verwendeten Versuchsproben	136
Anh	nang B: Werkstoffkennwerte und Werkstoff-Zugversuche	140
Anh	nang C: Durchführung der Kalibrierung	144
Anh	nang D: Fehlerbetrachtung	145
Anh	nang E: Ergebnisse aller Versuchsblöcke	147
Anh	nang F: Zusammenfassung der berechneten Bruchwahrscheinlichkeiten	174